Design, Create, Invent, Think, Dream

Have you ever thought that there must be a better way to do something? Or wondered how new technology could make your life better? Engineers have. Questions like these drive them to explore new ideas that will make the world a better place.

Engineers bring ideas to life; they use creativity and critical thinking to solve problems. Whether they’re creating electric cars, designing new video games, exploring other planets or helping speed recovery for people in the hospital—engineers are using their imagination, technical skill and teamwork to improve the world around them.

Engineers are constantly discovering new ways to improve our lives by finding creative solutions that connect science and technology to life in new ways. That’s what makes being an engineer so rewarding.

Are you an engineer?
The first to imagine the solution.

Can you imagine being the first to make a discovery that leads to the creation of artificial skin and organs? Or creating a new way to separate oil from oil sands without using water? Or exploring the terrain on another planet? These are just a few examples of the ideas that engineers are turning into possibilities right here at the U of A.

Engineers don’t just imagine what works – they’re driven to find out what works and how they can make it work better. Curiosity, education and vision have led engineers to create ideas that have changed how we all live, work and play.

Dr. Carlos Lange has gained a stellar reputation for his groundbreaking application of airflow into the weather station on the Phoenix Mars Lander. His research and insight have been instrumental in helping NASA scientists gain a greater understanding of the Red planet.
FACULTY OF ENGINEERING

COLLABORATION

More brainpower in numbers.

Engineering is all about teamwork. Collaboration brings people with different expertise and backgrounds together to brainstorm, drive innovation and create the best solutions possible. The nature of engineering creates a global community of professionals who work together to make what seems impossible a reality.

THE U OF A FORMULA SAE TEAM

The U of A Formula SAE Team is a student group that designs and builds a real formula race car each year. The team includes engineering students and students from other disciplines. It challenges them to tackle complex problems as a team.
FACULTY OF ENGINEERING

IMPACT

Your work matters in the real world.

Engineers are able to have a tremendous impact on the communities they live in and the world around them. Their ideas and actions impact every aspect of modern life. Engineers provide the technologies that allow us to explore outer space, the human body, nanotechnology and digital worlds.

BERNADETTE MENDOZA

Bernadette Mendoza is passionate about sustaining and improving our environment—especially when it comes to our water. She is an Environmental Engineering graduate student who is researching ways to enhance water quality in larger buildings and schools.
The Faculty of Engineering at the University of Alberta will give you the knowledge and skills you’ll need to be a successful engineer. For over 100 years, we’ve provided excellence in engineering education through world-class facilities, award-winning teachers and researchers and diverse, innovative programming.

Why U of A Engineering?

The University of Alberta is one of the top universities in Canada, leading the way in teaching, research and student excellence. The Faculty of Engineering offers our students exceptional opportunities, such as a cutting-edge learning environment, the chance to learn inside and outside the classroom, and a strong, supportive student community.

Fully Accredited Degree Programs

The Faculty of Engineering offers 21 fully accredited undergraduate degree programs—ranking us among the top engineering faculties in North America. We have the second largest cooperative education program in Canada, which gives students real-world experience as part of their degrees.

A Commitment to Excellence

At the U of A, you’ll find everything you need to be successful in your academic career and beyond. From professors who are passionate about teaching to leading edge facilities, everything is centered on helping you make the most of your education. Rewarding and diverse career opportunities exist for our graduates.

ESBEN NIELSEN

Esben Nielsen has always been curious about what makes things work. A Mechanical Engineering student, Esben chose the U of A because he felt it would best prepare him for a career in design, manufacturing, and maintenance.
FIRST YEAR ENGINEERING
Exploring the Possibilities

What to Expect

On your first day of engineering at the U of A, you’ll be joining a diverse group of students from all over the world. You’ll be among the best and brightest minds and will be given excellent opportunities for academic and personal growth.

Your first year will establish the course for your future as an engineer. The curriculum is designed to give you a solid foundation and introduce you to the vast opportunities available in engineering. You’ll not only increase your academic capacity, you’ll also discover how your ideas can help shape the future.

First Year Courses

All first year engineering students are introduced to the Faculty and engineering through common first year courses. This will help determine the engineering degree program you should enter in your second year. After your first year, you will also be able to choose between the Traditional route and the Cooperative (Co-op) Education route for the remainder of your undergraduate years.

First Year Engineering in French: The Campus St. Jean Cohort

Students have the exciting opportunity to study first-year engineering in French, taking eight of the twelve first-year engineering courses through Campus St. Jean, the U of A’s French Language faculty. Six kilometers east of the main campus, Campus Saint Jean includes classrooms and laboratories as well as a library, residence hall and physical education facility. You can easily move from one campus to the other by way of a free hourly shuttle service.

For more information, please visit www.csj.ualberta.ca

What to Expect

On your first day of engineering at the U of A, you’ll be joining a diverse group of students from all over the world. You’ll be among the best and brightest minds and will be given excellent opportunities for academic and personal growth.

Your first year will establish the course for your future as an engineer. The curriculum is designed to give you a solid foundation and introduce you to the vast opportunities available in engineering. You’ll not only increase your academic capacity, you’ll also discover how your ideas can help shape the future.

First Year Courses

All first year engineering students are introduced to the Faculty and engineering through common first year courses. This will help determine the engineering degree program you should enter in your second year. After your first year, you will also be able to choose between the Traditional route and the Cooperative (Co-op) Education route for the remainder of your undergraduate years.

First Year Engineering in French: The Campus St. Jean Cohort

Students have the exciting opportunity to study first-year engineering in French, taking eight of the twelve first-year engineering courses through Campus St. Jean, the U of A’s French Language faculty. Six kilometers east of the main campus, Campus Saint Jean includes classrooms and laboratories as well as a library, residence hall and physical education facility. You can easily move from one campus to the other by way of a free hourly shuttle service.

For more information, please visit www.csj.ualberta.ca

First Year Courses

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 103</td>
<td>CHEM 105</td>
</tr>
<tr>
<td>ENGG 100</td>
<td>ENCM 100</td>
</tr>
<tr>
<td>ENGG 130</td>
<td>ENGG 101</td>
</tr>
<tr>
<td>MATH 100</td>
<td>EN PH 131</td>
</tr>
<tr>
<td>PHYS 130</td>
<td>MATH 101</td>
</tr>
<tr>
<td>Complimentary Studies Elective</td>
<td>MATH 102</td>
</tr>
</tbody>
</table>

For detailed course descriptions please visit: www.registrar.ualberta.ca/calendar

ANISHA CHONG
First year is a time when students can get involved both inside and outside the classroom. During her first year, Anisha was an outstanding student and was also an active member of the First Year Engineering Club serving as VP of Finance.
From the fertilizers used to grow food to the gas you put in your car to the shampoo you use in your hair, the benefits of chemical engineering can be found in every aspect of modern life.

Chemical engineers find new ways to convert raw materials into finished products, many of which improve daily life. The impact chemical engineers are having on our environment and our world are being realized right now from the oil sands of Fort McMurray to the desert sands of the Sahara.

The U of A’s Chemical Engineering program is regarded one of the leading programs in North America and is recognized for its oil sands and biomedical research. Our graduate and undergraduate programs are taught by researchers who are well respected in both academic and industry circles.

NYSSA RITZEL
Nyssa Ritzel is on the forefront of the revolution that is taking place in Alberta’s oil sands. A Chemical Engineering co-op student, Nyssa is working on the development of new technologies in the oil sands separation process that will improve overall production while potentially lowering costs.
Civil and environmental engineers have shaped the world you live in. The roads you drive on, the bridges you cross, the buildings you live in and the water you drink are all the result of civil and environmental engineering.

Civil engineers plan, build and maintain the infrastructure needed to survive diverse regional climates, cases of extreme weather and the growing needs of our population. They do this while addressing environmental concerns and the challenges of providing a sustainable future.

The U of A’s Department of Civil and Environmental Engineering is among the best in Canada and offers students excellent research and career opportunities. The department is located at the centre of Canada’s energy sector, allowing for valuable hands-on learning as well as interaction with many of the top minds in the industry.

RACHEL CHAN

Can a bright future in civil engineering be directly linked to Canada’s past? It’s possible if your name is Rachel Chan. The goal of Rachel’s research in civil engineering was to help protect and rehabilitate important heritage buildings in Ottawa. Focusing specifically on mortar, part of Rachel’s task was to develop concrete that not only matched but also strengthened the material used by builders over a hundred years ago.
It’s hard to imagine life without the contributions of computer engineering. There would be no Internet, iPhones®, Twitter®, Facebook® or ATMs®.

Computer engineers have played a significant role in designing, constructing, integrating and operating computer systems and software that have changed our lives beyond what we could have ever imagined just a few years ago.

The Computer Engineering program at the U of A provides students with a broad background in the theory and application of hardware and software technologies. As a result, graduates are qualified for positions ranging from traditional computer engineering positions (e.g. software designer, computer systems designer) to positions often associated with electrical engineering (e.g. electronics circuit designer).

DANIEL HUCKSTEP
Working on the creation of video games is a dream come true for Daniel Huckstep (right). As part of his Computer Engineering Co-op program, Daniel worked with a program team at Bioware building developer support tools for the Visual Studio IDE on an XBOX 360 video game. There’s no limit to where the gaming industry will go, and the same can be said about the role Daniel Huckstep will play in it.
Think of what your life would be like if you couldn’t turn on a light to see at night, crank up your favorite song in your car, text your friends from anywhere, or even watch your favorite show.

Electrical engineers are responsible for providing the power, communications systems and electronic devices we all rely on everyday. Many of modern conveniences we often take for granted often originated in the talented minds of electrical engineers.

The Electrical Engineering program at the U of A is meeting the challenge of rapid change by helping students build a sound foundation of knowledge and expertise. Electrical engineering students are involved in the development of electrical devices and work with systems that transmit, distribute, store, control and use electromagnetic energy or electrically coded information. The aim of the program is to provide students with the skills and background to adapt to progress they will encounter during their careers.

RYAN SYMIC
Ryan Symic is living proof that an engineering degree can literally take you around the world. As Project Engineer with Schlumberger, Ryan is responsible for designing surface power and control equipment that operates and monitors oil wells stationed around the globe. In his position, Ryan has worked in offshore, arctic, jungle and desert conditions from California and the Gulf Coast to Europe, Africa, Asia and South America.
Discoveries in areas such as archaeology, artificial intelligence, robotics, remote sensing, photonics and “smart” materials are making our computers faster, helping us to communicate more clearly than ever before and improving our overall quality of life. Much of what is being created and discovered in engineering physics today is directly influencing where we’ll be in the future.

Engineering physicists are accomplishing breakthroughs in areas ranging from applied science and information to health and safety by applying cutting edge developments in physics to new and existing technology and techniques. Engineering physicists are helping us discover more about ourselves and are advancing our future by constantly challenging current insights and exploring the potential for even greater innovation.

The U of A’s Engineering Physics program starts with a strong foundation in mathematics and physics and builds upon these principles through active research projects in areas such as fusion energy, microelectronics, robotics systems and fibre optic communications. The program offers a wide range of opportunities to students upon graduation. It also prepares students to combine fundamental and applied knowledge to meet unique engineering challenges.

ROBERT JOSEPH
Can you imagine working on a computer as fast as the speed of light? Robert Joseph can. As an undergraduate student in Engineering Physics, Robert was involved in the area of photonic computing research where he worked on controlling the direction of light and data on a microchip. Now pursuing his degree in Law at the U of A, one of Robert’s ambitions is to carve out a unique niche by merging his knowledge and experience in engineering physics with that of corporate law.
From laptops less than an inch thick to buildings that reach close to 1000 meters in height to compounds used to strengthen broken bones, materials engineers are constantly pushing the boundaries of what is possible with the materials we use everyday.

Materials engineers play key roles in the production of primary materials, the processing of materials and the manufacture of final products. They are revolutionizing almost every facet of society by creating lighter, stronger and more flexible materials than ever before.

The U of A is the only university in Western Canada to offer a Materials Engineering program. An integral part of the Faculty of Engineering for almost 40 years, the program’s solid reputation keeps our graduates in demand across Canada and around the world in industries such as energy, biology, medicine and communications.

SHERRI MAZUR
Sherri Mazur is turning a personal setback into a career that could benefit millions of people. Inspired by what it took to treat her own broken ankle, Sherri is a Materials Engineering student investigating new materials that can help eliminate painful follow-up surgeries to remove steel pins and screws from patients with broken ankles.
From the invention of intricate motors in pacemakers that save countless lives, to the creation of high performance vehicle engines that run on planet-friendly biofuels, to the development of increasingly efficient engines used by power plants to generate electricity that maintains our comfortable lifestyles, the influence that mechanical engineers have on daily life is simply profound.

Mechanical engineers not only invent and operate the engines that drive industry; they also create better ways for people to live by pushing the limits of the physical world. Constantly at work rethinking and evolving the machines that we rely on to sustain our lives, they also research new opportunities that will greatly enrich our future.

The Department of Mechanical Engineering at the University of Alberta offers a broadly based program that prepares graduates for immediate employment in a wide variety of industries ranging from transportation to medicine. Our students gain a thorough understanding of mechanical engineering by taking courses in five major areas: solid mechanics, dynamics, fluid mechanics, thermodynamics, and design. The emphasis is on providing opportunities for students to integrate theoretical knowledge with practical, hands-on application and design.

PROGRAMS
- Mechanical Engineering
- Biomedical Option*

AREAS OF EMPLOYMENT
- Aerospace
- Automotive
- Biomedicine
- Construction
- Energy & Natural Resources
- Heating, Ventilation & Cooling
- Manufacturing
- Nanotechnology
- Transportation

* Offered subject to student demand.

KELLY HEARN
Creativity, ingenuity, and problem solving skills are an integral part of an engineering education, which Kelly Hearn is learning during her Mac E 260 course. Every year the course challenges second year mechanical engineering students to design, build, and test a miniature vehicle capable of overcoming challenges. Kelly is working on a miniature Mars Rover designed to pick up and realign small probes that were scattered during landing.
Most resources that cannot be grown or harvested need to be extracted from the Earth by mining engineers. From the minerals we take to keep our bodies strong to the diamonds that inspire our hearts to the coal that keeps our modern electrical systems powered, mining engineers provide us with many of the resources needed to sustain our modern lifestyle.

Mining engineers work with every aspect of the extraction of resources from the ground. They apply science and technology to plan, design, develop, optimize, operate and manage mining and mineral projects that provide the world with precious and base metals, industrial minerals, synthetic crude oil and coal.

The Mining Engineering program at the University of Alberta is the largest in Canada and one of only two programs available in Western Canada. It is a broadly based program covering subject areas ranging from surface and underground mining to physical and mathematical sciences. Our graduates are well equipped with the tools they need to compete and succeed in a variety of careers in industry, government or the service sector.

Mining ENGINEERING

PROGRAMS
- Mining Engineering

AREAS OF EMPLOYMENT
- Consulting
- Energy & Natural Resources
- Equipment Design
- Land Reclamation
- Mineral Exploration
- Operations Management
- Surface Mining
- Underground Mining

ABHINEET SHARMA

Abhineet Sharma knows where the future of mining is going, literally. A Mining Engineering graduate student, Abhineet’s research into tire life and road building will help manufacturers refine criteria for tire life calculation, making mines safer and less expensive to operate.
The influence that petroleum engineers have on us reaches far beyond the gas we put in our cars. The resources they provide are key components in many products that make our lives easier and more comfortable including the detergents we use to wash our clothes, the plastics used in our laptops and the packaging that keeps our food fresh.

Petroleum engineers apply scientific understanding and technology in the exploration and management of hydrocarbon resources while preserving and protecting the environment.

For the past five decades the University of Alberta has offered the only accredited BSc Petroleum Engineering degree program in Canada. Situated in Canada’s primary oil and natural gas producing region, we offer our students a distinct advantage by providing numerous research opportunities within the petroleum industry. U of A Petroleum Engineering graduates are in great demand in Canada’s oil and natural gas industry and by an increasing number of American petroleum companies. Experienced petroleum engineers are also finding employment opportunities in the Middle East, Asia Pacific, Africa, and Latin America.

PROGRAMS
• Petroleum Engineering

AREAS OF EMPLOYMENT
• Consulting
• Energy & Natural Resources
• Equipment Design
• Operations Management
• Petrochemicals
• Utilities
• Well Site Exploration

Japan Trivedi is part of the team in petroleum engineering studying the dynamics of matrix-fracture interaction in naturally fractured reservoirs that could optimize oil and gas production and CO2 sequestration processes. The results of Japan’s research has the potential to revolutionize how oil and gas reserves are recovered in the future making it more cost efficient and environmentally friendly.
Biomedical engineering has played a major role in further advancing the field of medicine. Biomedical engineers use the principles of engineering to solve problems in medicine and biology. They work with human structures and systems, and use engineering principles to improve the quality of life for people around the world.

As the demand for medical technology continues to evolve and expand, we are able to offer our biomedical engineering students new opportunities for learning, research and employment. Our biomedical options give students the background to continue studies and research on a graduate level or to complete prerequisites for entrance into the Faculty of Medicine.

Jena Dressler has worked on the development of a multi-axis biomechanical testing apparatus that has given researchers the ability to test the stress and impact that force has on knee joints. The findings that Jena and the team of engineers have come to could influence how knee surgery is conducted in the future.
Nanotechnology may be the science of the really small, but its potential is extremely large.

Nanotechnology is being applied to thousands of consumer products and is improving everything from the paint we use in our homes to the speed of the computers we use at work. Research is being conducted on improving the quality of drinking water in the third world and scientists right here at the U of A are currently studying the use of nanotechnology in developing new cancer treatments that could one day replace radiation and chemotherapy.

Nanotechnology is the study, design and fabrication of materials on a size scale less than one micrometer. The University of Alberta is home of the internationally renowned National Institute for Nanotechnology (NINT). It attracts world renowned experts in the nanotechnology field and offers the unparalleled opportunity to learn from some of the foremost, international experts on Nanotechnology.

Nanotechnology options are available in four disciplines, each offering an opportunity to apply engineering concepts in a specialized nanotechnology context.

Nanotechnology options

Programs

Computer Engineering Nanoscale System Design - Study the processes involved in designing and fabricating nanoscale integrated circuits.

Electrical Engineering Nanoelectronics - Learn the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level.

Engineering Physics: Nanoelectronics, Nanobiotechnology and Microelectromechanical Systems Processing.

Areas of Employment

- Aerospace
- Agriculture
- Chemical
- Education
- Electronics
- Energy & Natural Resources
- Environmental
- Healthcare
- Information Technology
- Manufacturing
- Semiconductor
- Textiles

*Offered subject to student demand.

Dr. Chris Backhouse, P.Eng

With his lab-on-a-chip that has the potential to put the functionality of an entire lab upon a single microfabricated chip, to creating a new series of lab instruments that have a variety of applications in cancer care, public health and general health care, Dr. Chris Backhouse is literally revolutionizing the quality of health care for hundreds of thousands of people.
EXPLORE YOUR POTENTIAL

The next generation of engineers will change the world and the Faculty of Engineering is here to prepare you for this incredible opportunity.

You will learn from recognized leaders in teaching excellence and have the opportunity to use world class classroom and research facilities. You have the opportunity to learn the valuable skills you will need to find employment after graduation by participating in the Engineering Co-op Program or by visiting the knowledgeable staff at the Engineering Employment Centre. Project management and leadership skills can be learned or enhanced by participating in one of our many student design projects or student clubs. Both will allow you to learn practical skills in a fun, exciting environment.

Everything you might need to help you through your program is available for you during your degree, so explore your opportunities today!

Engineering Co-op

The cooperative education in engineering program allows you to experience paid, supervised, engineering work experience while completing your degree. The program requires a total of five year compared to the traditional four year program but uses the additional time to incorporate five, four month work experience terms into your program.

The Engineering Co-op Program is the second largest program of its kind in Canada with over 1400 work term placements per year, accommodating approximately 40 percent of our student body.

During your work terms, you will be treated as a full-time employee in a position related to your field of study and get to work under the supervision of other engineers.

For more information, visit: www.coop.engineering.ualberta.ca

Engineering Employment Centre

Finding a job can be tough and the Engineering Employment Centre is here to help you with your job search. Whether it is a summer job or a permanent position, the Engineering Employment Centre has opportunities for current students, recent graduates, or alumni.

Whether you are a first time job seeker or a seasoned veteran of the job market, the friendly and knowledgeable staff is happy to share their expertise with you as you begin an exciting new phase of your career. All services are free of charge.

For more information, visit: www.employment.engineering.ualberta.ca
Engineers are often called upon to be leaders after graduation. Whether it is leadership in industry or in the community, engineers rely upon the skills they have developed in the areas of teamwork, communication, management and creativity to truly excel. Students can enhance the skills they are learning in the classroom by getting involved with our engineering clubs and community.

The Engineering Student’s Society (ESS) represents all engineering students and organizes social, networking, professional development and humanitarian events for students to participate in.

Discipline Specific clubs provide professional growth, networking opportunities, and encourage a sense of community amongst students.

The Engineering Head Shave is a tradition that allows engineering students to give back to the community. Over the seven year history of the event students have raised over $250,000 for cancer research being done on campus.

Engineers Without Borders applies engineering solutions and ingenuity to humanitarian causes and projects both on campus and in the community.

The Engineering Head Shave is a tradition that allows engineering students to give back to the community. Over the seven year history of the event students have raised over $250,000 for cancer research being done on campus.

The Engineering Head Shave is a tradition that allows engineering students to give back to the community. Over the seven year history of the event students have raised over $250,000 for cancer research being done on campus.

The Engineering Head Shave is a tradition that allows engineering students to give back to the community. Over the seven year history of the event students have raised over $250,000 for cancer research being done on campus.

Exciting Student Projects

Exciting is the key word here. Our student projects are really cool and allow our students the opportunity to work as a team to showcase their skills and ideas in national or international competitions. The experience you’ll have working on a student project will prove to be invaluable. You’ll be able to utilize your engineering skills to design and build projects that will challenge you and allow you to compete against other engineering schools in Canada and around the globe. Our students have done well in numerous competitions but are always striving to improve upon previous performances.

Some projects include:

- U of A Aerial Robotics Group (UAARG) designs and builds Unmanned Aerial Vehicles and competes nationally.
- Formula SAE Team designs and builds a formula car every year and races it in a worldwide competition in California.
- Autonomous Robotic Vehicle Project (ARVP) creates a robot that can think for itself and navigate through obstacles.
- University of Alberta EcoCar Team designs and fabricates a zero emissions vehicle to compete in international competitions.
- Great Northern Concrete Toboggan Race Team (GNCTR) designs and builds a 300 lb toboggan and then races it down a ski hill at up to 60km/hr in a national competition.
- Aero Heavy Lift designs an air plane built to carry a large amount of weight over a prolonged period and competes internationally in California during the spring.
High School Students

Most students enter the Faculty of Engineering directly from high school. To be admitted, you must have successfully completed the following five Alberta grade 12 courses, or their equivalents in other provinces:

- English Language Arts 30-1,
- Chemistry 30,
- Math 30-1,
- Math 31 (Calculus),
- Physics 30.

The minimum admission average is determined annually. For information on the current admission average, please visit www.engineering.ualberta.ca/ProspectiveStudents.

Application deadline: May 1.

To apply today visit: www.ualberta.ca/apply

Transfer Students

Applicants transferring from another university or college within Alberta are asked to visit the Faculty’s website for detailed information: www.engineering.ualberta.ca/TransferStudents

If you are applying for admission from outside of Alberta, please visit: www.admissions.ualberta.ca/ProgramsAndRequirements.aspx

Scholarships and Awards

The Faculty of Engineering has over $1.5 million in scholarships that are annually awarded to engineering students, making our scholarship program one of the best in Canada. Scholarships are available for new and continuing students and are based on a wide variety of criteria that can include academic performance, leadership and community service activities.

We attract top students who are nationally recognized with prestigious awards such as the CD Howe Memorial Foundation Award for the top first-year male and female engineering students in Canada. Our faculty has won more CD Howe Awards than any other engineering school, including the top female award in 2005, 2006 and 2007.

For more information and to apply for awards, please visit: www.ualberta.ca/awards

Web Resources

- Faculty of Engineering: www.engineering.ualberta.ca
- Engineering Students’ Society: www.ess.ualberta.ca
- Campus Visit Program: www.ualberta.ca/campusvisit
- Admissions & Student Awards: www.admissions.ualberta.ca
- U of A Students’ Union: www.su.ualberta.ca
- U of A Student Services: www.studentservices.ualberta.ca
- International Student Services: www.international.ualberta.ca
- Residence Services: www.residence.ualberta.ca
ENGINEERS WITHOUT BORDERS

The U of A student chapter of Engineers Without Borders (EWB) has gained local and national recognition for their work to educate Canadians about poverty and development issues and to make an impact on a broader world. U of A students involved in EWB work locally—with programs such as school outreach workshops—nationally by participating in initiatives like the Make Poverty History campaign—and internationally by sending students on internships overseas to places such as Zambia and Malawi.

EXPLORE THE POSSIBILITIES

Be part of the next generation of engineers who will change the world.

Engineers are designers, creators, inventors, thinkers and dreamers. They use creativity, problem solving skills, critical thinking, and teamwork to address the world’s problems and challenges. They have the ability to make a profound impact on their communities and the world around them.

The Faculty of Engineering provides you with the opportunity to learn how you can make a difference in the world while exploring rewarding career opportunities that can take you anywhere you want to go.

Start now, become an engineer.
Wanted: Designers, Creators, Inventors, Thinkers, Dreamers

FACULTY OF ENGINEERING
E6-050 ENGINEERING TEACHING & LEARNING COMPLEX
UNIVERSITY OF ALBERTA
EDMONTON, AB T6G 2V4

PHONE: 780.492.3320
TOLL FREE: 1.800.407.8354
FAX: 780.492.0500

WWW.ENGINEERING.UALBERTA.CA
ENGGINFO@UALBERTA.CA